I P T Y 1 Form Approved
1910 10 Sverage | MO/ OB rIBOMY, 1IUGING N TG 1P FEVIEWIRG | ARTUCDENG, J06IING Imeting 34t3 0urce.,
— renewng (1e colection ot 1nformanon Send commena S BUrean ETOMATE OF ity CTRGY NIOUCT Of thry
AD-A239 228 s e e e e R s T
INEARTH === iy U or 59 o 31
| Il FINAL, 0L
& TITLE AND susTITLS] ’
PARALLELLOGIC PROGRAMMMING AND PARALLEL SYSTEM SOFTW%RE'
HARDWARE ! ,,f/ ¥ | AFOSR-90-0027
WﬁONS)) ;’ T ’ . 61102F 2304/A7
{
Dr. Minker g ol
s g
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMACR

Univeristy of Maryland .
Computer Science Department o . ‘# 0 | .‘ ¢

College Parkm MD 20742

Lt 1A S
3. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) |, 70, SPONSORING/ MONITORING |
P A} H SN WY 5o AGINCY REPORT NUMBER
AFOSR/NE £y £ 5 AFOSR-90-0027
| Brage1o R R B 61102F 2304/A7
\| Bolling AYIDG $0332-8448 ws
e rr TR YTy
11. SUPPLEMENTARY NOTES
122. OISTRIBUTION/ AVARABILITY S‘l’A"MIN? 128, OISTRIBUTION COOE
Appreved for pudly
erelease:
diatridutiocn unlimined, __

13.ANH1AE7ﬂuumnwn200

This constitutes the f:gniieport of work performed under AFQOSR grant number $0-0027 to investigate
parallel probiem solving and deductive databases. Under the grant experiments were performed on the
PRISM parailel inference system on the BBN Butterfly. The experiments evaluated alternative message
passing strategies for distributing tasks to processors at run-time. Several enhancements were made to
PRISM during the grant period. These are: a2 new inference enging was implemented which provides more
effieienct support for the full control language of PRISM; and alstack based inference engine was
impiemented which provides e§ficient support for the use of limited set of control strategies.
Simulation studies were performed which evaluate alternative methods for scheduling tasks on parallel
architectures. Two methods were examined which allow thek OR-parallel execution of logic programs with
no communication overhead. A study was perfomred evaluating two alternative methods for incorporating
integrity constraints into query processing in PRISM. In the first method, separate constraint
processors are 1introduced which check constraints at run-time. In the second method, contraints are
incorporated through compiie-time transformations. The study indicates that constraints are useful
inguery processing and that the compile-time methodology results in more efficient performance than
checking constraints at run-time. In addition to the above, work continued in the area of informative

answers to queries in deductive databases.
e R vy s |

14 SURIECT TIRMS 1950 NUMBER OF PAGLES
16. PRICE COOE
#WW 1
7 SICURITY CLASSIFICATION | 18. STCURITY CLASSIHCATION | 19. SICURITY CLASSIFICATION |20. UMRTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-39)

Drescrrond Ow ANS Ste. L3918

Abstract

This constitutes the final report of work performed under AFOSR grant number 90-002%o investigate
parallel problem solving and deductive databases. Under the grant experiments were performed on the PRISM
parallel inference system on the BBN Butterfly. The experiments evaluated alternative message passing strategies
for distributing tasks to processors at run~ti;ne. Several enhancements were made to PRISM during the grant
period. These are: a new inference engine was implemented which provides more efficient support for the {ull con-
trol language of PRISM: and a stack based inference engine was implemented which provides efficient support for
the use of a limited set of control strategies.

Simulation studies were performed which evaluate alternative methods for scheduling tasks on paraliel
architectures. Two methods were examined which allow the OR-parallel execution of logic programs with no
communication overhead.

A study was performed evaluating two alternative methods for incorporating integrity constraints into query
'processing in PRISM. In the first method, separate constraint processors are introduced which check constraints
at run-time. In the second method, constraints are incorporated through compile-time transformations. The
study indicates that constraints are useful in query processing and that the compile~time methodology results in

more efficient performance than checking constraints at run-time.

In addition to the above, work continued in the area of informative answers to queries in deductive data-

bases. Souensiia 3
S :.",.'1;1 L‘ -
H PN) N " 16
D SIS S 8 - i
o) vew
Yoor Lo oo '
i J s v i L o
; AT A R P A et e < ¥ Ll
’ e e —— ! 5
t -
P
H- T }
P -u...--vo—--_.._..«{
PR
TS LS S TSN TTNY !
- H

AR PERS SR Pe

")-';.‘} , 7"’0('

o gt-oems
\\\l\\\\|\\\|\\l\\||'\\\|\\|\|\\|\\\\\\\||\

,?
P

1. Introduction

This report constitues the final report of work performed on parallel problem solving and deductive data-
bases under Air Force Grant AFOSR 90-0027 Under the grant experiments were performed using the PRISM
system on the BBN Butterfly parallel architecture to evaluate message passing strategies and the use of con-
straints in problem solving. Several enchancements were made to the PRISM system including che design and
implementation of two inference engines. Simulation studies were performed which evaluate methods for distri-
buting tasks to processors which do not require interprocess communication or synchronization. In addition, we

extended our work in cooperative answers to database queries.
Due to budget cuts several proposed investigations were not performed. These areas are:
1. AND-parallel execution of PRISM
2, Investigations in Al-Based parallel software
3. Coupling databases to processors in parallel/non-parallel environments.”
As a consequence of the work accomplished during the past year of the grant period we have published:

1. 1 Ph.D. thesis with partial support from the grant {Giuliano90bj.

SJ

1 journal article [Chakravarthy90|

3. 3 book chapters [Giuliano90a,Gal,Grant).
4. 2 refereed conference papers [Lin,Liu]

5. 1 invited conference paper [Minker]

6. 1 workshop paper {Gaasterland90b)

1 technical report [Gaasterland90a)

ot |

A list of papers that have been written during the current grant is provided in Section 2.3. A total of 7 published
papers have appeared in print, and a total of 3 additional papers have been accepted for publication during the
grant period. The references in Section 4 of the proposal list all papers produced with support from the AFOSR

during the several years that the Air Force has been supporting the research.

2. Accomplishments on Effort During Period November 1989 — November 1990

In this section we report on the accomplishments obtained during the period from November 1989 to
November 1990. This section is subdivided into three major parts. The first section, 2.1, describes the accom-
plished research with respect to parallel logic programming. The second section, 2.2, describes the accomplished
research with respect to deductive databases. Section 2.3 contains a list of all papers and reports written during

the grant period.

Three major efforts were proposed:

—
4

Investigations in parallel logic programming using PRISM
2. Investigations in Al-based parallel software
3. Investigations in deductive databases

Due to budget cuts the second research area was dropped as well as several sub-tasks of the first and third

research areas. Each of the tasks, in which work was performed, are described in the following sections.

2.1. Investigat:ions in Parallel Logic Programming Using Prism

There were five major tasks involving the parallel execution of logic programs that we planned to undertake

during the current grant period.

1. Continued experiments with PRISM

LS
.

An evalualion of constraints in parallel problem solving
3. Stack based crecution models

4. Memory management for the shared memory model of PRISM

U

Ezperiments with AND-parallelism

Emphasis was placed on tasks in the first four areas. Substantial progress has been made in the four areas stu-

died.

-3—

2.1.1. Continued Experiments with PRISM

In previous grant periods the PRISM system was implemented on the BBN Butterfly and McMOB parallel
architectures. In this grant period experiments have been performed evaluating the PRISM system and substan-
tial improvements have been made to the PRISM inference engine. Both theoretical and empirical studies were

performed on task distribution in message passing parallel architectures.

A new inference engine for PRISM has been designed and implemented. The new engine supports the same
control features as the old engine and executes ten to twenty times faster. The engine achieves more efficient exe-
cution through the use of binding environments for variables. The current i{nplemenmtion is operational on
sequential architectures as a stand alone logic programming system. A methodology for achieving parallel execu-

tion has been designed for the new inference engine and is currently being implemented.

Message passing protocols for distributing tasks to processors in PRISM have been evaluated ;Giuliano90a}.

In PRISM, problem solving machines (PSMs) with extra work actively seek ‘out idle processors by sending mes-
sages. If no machines are available when a resource allocation message is sent, then an overhead is incurred for no
increase in parallel performance. Alternative protocols are investigated for knowing when resources are available
for parallel problem solving. The protocols trade off the number of failed resource allocations for the amount of
T machine utilization. Six protocols (A - F) were evaluated in the experiments. In protocol -\ processors attempt to
allocate remote resources regardless of failed resource allocations. In protocol D processors attempt to allocate
remote resources until a failed resource allocation occurs (a readback). In the remaining protocols (B,C,E, and F)
processors communicate processor availability. The protocols differ in when they send available messages and the
addressing mode used to send the message (see the table in figure 1). Three benchmark programs were executed
on the BBN Butterfly version of PRISM using the alternative message passing protocols. Experimental results are
given in Figures la-lc for a version of the 8-queens program. Figure 1a shows the speed-up obtained over execu-
tion on a single processor for each of the protocols. Figure 1b shows the idle time in the system versus the
speed-up when executing with 50 processors. Figure lc shows the number of readbacks (i.e. failed processor allo-
cations) versus the speed-up when executing with 50 processors. The figures show a clear tradeoff between idle

time and failed resource allocations. Protocols with low idle time have a high number of failed resource alloca-

—4

tions. Protocols with high idle time have a low number of [ailed resource allocations. The best performance

occurs in protocol C which balances the number of failed resource allocations and the idle time.

Another study evaluates the use of task scheduling strategies to improve the paralle! performance of PRISM
{Giuliano90a.Giuliano%0b]. The study compares breadth-first versus depth-first task distribution strategies. In
breadth-first execution tasks are distributed to new processors in a breadth-first manner and tasks are executed
locally in a depth-first manner. In depth-first execution both remote and local tasks are scheduled in a depth~
first manner. Four benchmark programs were executed on the BBN Butterfly version of PRISM using the alterna-
tive distribution strategies. Experimental results are given in Figure 2 for a version of the 8-queens program.
Two tables are given. The first table shows the speed-up versus the number of processors for each protocol. The
second table shows the number of task invocations versus the number of processors for each protocol. The study
indicates that breadth-first scheduing results in better parallel performance by decreasing the number of tasks

distributed among the processing elements.

Theoretical analysis and simulation studies were performed on the distribution of OR-parallel tasks to pro-
cessors. A study evaluated an approach for distributing tasks to processors which does not involve communica-
tion between processing elements. In random scheduling [Janakarirm] each processor is initialized with the same
task and performs a depth-first search on the task. The processors search different portions of the proof tree by
randomly ordering the program clauses to be executed. The idea is that some processors will select a short path
and will thus find the solution quickly. Random scheduling was evaluatzd using simulation studies and theoretical
analysis {Lin]. The evaluation demonstrates that on the average. random scheduling is not worse than approaches
which use interprocess communication even if communication costs are assumed to be zero. \With realistic com-
munication costs. random sched;Jling performs better than approaches which require communication. Random
scheduling is not efficient for problems in which all solutions are required. If all solutions are required, then each

processor will randomly explore the entire search space.

A modification of random scheduling is rule-based scheduling. Like random scheduling, rule based schedul-
ing does not entail communication hetween the parallel processing elements. All processors are initialized with the

same tasks and perform a depth-first traversal of the search space. In rule-based scheduling, processors order the

_03: Speed-Up vs. Number of Processors

o v - .

30 40 50
Number of Processc;’rs

b: Speed-Up vs. Idle Time (50 Processors)

50
e
o B
B
5304 :
g :
. F*
g'eo“’* o
D
10
0 y — ' r———p——my
0 10 40, 50 60 70

20 30
Percent Idle Time

c: Speed-Up ¥s. Num of Readbacks (50 Processors)

Message Passiog Protocols

50T e
R
T Runtime -
Speed—up = — —
P P= Time on Single Processor g 301~ = ¢ v e
. S] - A
Idle Time= bu.m of Idle Time for each Fi'occ-ssOr i F
Number of Processors X Runtime % R -
107
0 v v v -
10 100 1000 10C00 100000
Number of Readbacks
Communication Condition Location Seat | Name
PSM becomes (ree |__all busy PSM B
Proc_esors single busv PSM C
Available PSM becomes free all busy PSM E
after readback single busy PSM F
. Stop sending queries - D
Noae after readback.
Send queries - A
regardless of readbacks

Figure 1: Message Passing Protocols for the 8 Queens on BBN Butterfly

-6-

Queees= Namber of Queries va. Nutrher of Processors

3000 «
N
[
'bm -
- €
3
g r
o
€ - s fovnnc f anen uusvsusvar o pesed -
d ”1 f .
1 - H
v . Q :
» : . : e :
4. e mven sone {;m.
e
. s
10 by £ -
0 v Yy ——r] 0 v Yy T —y—
9 10 0 20 + 50 o0] 10 0 30 0 0 o0
Nusmber of Processors Number of Processors

Figure 2: Queens2 Program: Breadth-First vs Depth-First Node Distribution

clauses at choice points based upon simple rules. For example, consider a ;;rogram which has two alternative
branches at each level of the proof tree. In this case, a rule could specify that at each alternative branch the pro-
cessors are divided in half. In this manner. processors are guaranteed to examine different portions of the proof
tree. A backtracking search occurs once a branch has only a single processor searching it. This approach has no
inter-process communication and allows multiple answers to be obtained in an efficient manner. Preliminary
results obtained from simulation studies are promising. High speed-ups were obtained for programs with regular
shaped execution trees. For example. the simulation shows that for the 8-queens program, 3 speed-up of 40 using
128 processors can be achieved. In contrast, the best concrete implementations. which use communication between
processors, saturate with a speed-up of 14 after using 32 processors. Application programs with irregular shaped

proof trees did not achieve good parallel speed-up. An initial investigation suggests that programs whose proof

trees are irregular can be transformed so that their proof trees become regular.

Random and rule-based scheduling differ from scheduling techniques which require interprocess communica-
tion. In systems which require communication, an initial query is given to a single processor. The processor exe-
cutes the task and distributes sub-tasks as they occur to new machines. Likewise, the other machines execute their

tasks possibly distributing new sub-tasks to other processors. Interprocess communication and synchronization is

-7~

required to distribute the tasks. In contrast. in rule or random-based scheduling, there is no overhead for distri-
buting tasks to processors. Because random and rule-based scheduling do not require communication, the simula-
tion techniques used in the evaluations are highly accurate. Thus, we expect that concrete implementations of the

scheduling strategies will result in similar performance.

2.1.2. Constraints in Parallel Problem Solving :

A series of experiments were performed evaluating two methodologies for incorporating constraints in
PRISM iGaasterland90aj. Constraints provide the ability to prune the search space of 2 program based upon
semantic information. The first approach incorporates constraints at run-time by introducing constraint solving
processors :Kohlil. In this approach deductive processors interact with constraint processors to detect proof states
which violate the integrity constraiats. The second apprcach incorporates constraints by compile-time transfor-
mations which intergrate constraints with the program clauses {Chakravarthyi. The resclting program may then
be executed using only deductive processors. An evaluation of the twe methc;doiogicm using the PRISM system on

the BBN Butterfly parallel architecture yields the following results:

1. The evaluation demonstrates that widely used classes of logic programs can use constraints to improve query

processing.

to
.

The evaluation demonstrates that the compile-time approach to incorporating constraints results in better

performance than the run-time approach.

3. The evaluation reveals additional issues in the compile-time and run-time approaches which must be

addressed to utilize the theories of {Kohlij and [Chakravarthy].

Application programs were encoded from three logic programming domains. The domains involve inheritance
hierarchies. the use of clustered data, and generate-and-test programs. The evaluation shows that for each of the
domains both methods for incorporating constraints performs better than not utilizing constraints. The runs
incorporating the compile~-time approach resulted in better performance than the run-time approach for all the

program domains.

Experimental data is given for incorporating constraints in a inheritance hierarchy program on the BBN

Buttertly version of PRISM. Experiments were performed in three modes without constraints, with constraint

-8—

machines, and with constrairts compiled into the source program. The experiments incorporated 1.2,4, and 6 pro-
cessing elements. In the experiments incorporating separate constraint machines, each constraint machine is
tightly coupled with a deductive processor. The results are given in Figure 3. The table shows that both the
run-time and compile-time method for incorporating constraints per{orms better than not using constraints. In

addition. executions using the compile-time method perform better than using the run-time method.

2.1.3. Stack-Based Execution Models

A new binding scheme whick supports OR-parallel execution of logic programs on distributed memory

architectures was designed and implemented. The scheme 15 designed for stack-based inference engines and is

-20 R [] . L -

NOZONMY Dme — OZ oS0

‘compiled

H
L § | 1]]

0 1 2 3 4 b) 6
Number of Processors

)

Figure 3: Run-Time Data for a Semantic Network Program

-9

currently implemented in an inference engine for the PRISM problem solving component. The main idea is that
on creating a new task enough information is packaged from the current processor such that the processors can
execute independently. The advantage of the scheme is that it allows processors to execute deduction steps with
no overhead over sequential execution. As such any improvements gained due to parallel execution offer improve-

nmeats over execution on sequential architectures.

An evaluation of the binding scheme was performed using 60 processors on the BBN Butierfly version of
PRISM {Giuliano90bj. The evaluation shows that programs in the benchmark set achieve from 5-30 factors of
speed-up over sequential execution when using 60 processing elements (see Figure 4). Detailed statistics collected
from the experiments indicate that many of the benchmark programs achieve low speed-up due to a high start-up
cost for creating new parallel tasks. This is illustrated in Figure 5 which plots the percentage of time spent per-
forming deduction steps versus the number of processors used in problem solving. The figure shows that for some

benchmarks. processors spend up to 80 percent of their active time performing overhead for parallel execution.

speed-up vs. Number of Processors {all answers)

JOq o m e o S S

304 -t e e s e e QU :s'.‘.m--%

S

p

s

d -_)OJ .

I

Y

14
104
0 v

0 10 20 30 40 SO0 60 70
Number of Processcrs

Figure 4: Speed Up in PRISM

-~10~

Active Time Spent on Deduction

=)
(-]
.

8

8 & 8

ARwe] PO=wARANID cBONANST

8

104~ == - B e R

G v v v v
(1] 10 20 20 40 30 60
Number of Processors

P—

0

Figure 5: Percentage of Active Time Spent on Deduction

The use of task distribution strategies were investigated to lower the overhead for creating parallel tasks. The

study shows that task distribution strategies can improve parallel performance by up 0 50 percent by preventing

trivial goals from being executed in parallel. Both run-time arnd compile-time strategies were shown to be useful

for preventing trivial sasks from being exccuted in parallel.

2.1.4. Memory management for the shared memory version of PRISM

Although some work was performed on this task. no substantial results were obtained as the 123 node BBN

Butterlly at our site was dismantled.

2.2. Investigations in Deductive Databases
The proposed investigations in this area were to:

1. Extend work on cooperative answers

2, Compute answers in non-Horn theories

~11-

3. Couple databases to processors in parallel/non-parallel environments

Empi:asis was placed on the first and second area.

2.2.1. Extending Work on Cooperative Answers

The threory of cooperative answers developed by Gal and Minker.{Gal] with support from the AFOSR works
on both relational databases and on definite. nonrecursive, function free deductive databases. Until now, the focus
of the cooperative answering effort was to collect information that could be included in a cooperative answer and
to select salient information from the available pool. The theory takes advantage of integrity constraint informa-
tion already available in a database to correct user misconceptions and to expand or to narrow the scope of
answers. As of the previous grant period, the cooperative theory was fully implemented and the working system

provided the basis for further research.
In the current grant period, our work focused on the following:
(1) designing a more sophisticated natural language output component;
(2) focusing the answer to address the original query and the user’s needs;
(3) using information in the query’s proof tree to provide additional cooperative information.

Even when the contents of an answer satisfy the query, address presuppositions, and are suitable to the
user's purposes, expressing the answer well in natural language remains a complex task. Although it is easy to
map predicates into natural language, the resulting language can be haphazard and flat. For example, if the
clause to be realized in natural language is grandmother(rose, sally) <<--mother(rose,jeck) fother(jack,sally), a
straightforward mapping would be "Rose is the grandmother of Sally because Rose is the mother of Jack and
Jack is the father of Sally*. Similarly, mother(rose.jack) and mother(rose,george) would become *Rose is the
mother of Jack and Rose is the mother of George®. Better responses would be "Rose is Sally’s grandmother

because she is the mother of Jack, who is Sally’s father® and *Rose is the mother of Jack and George®.

We have designed and partially implemented a theory to organiue the elements of a cooperative response.
The theory incorporates principles of coordination, subordination, anaphora, pronominalization, and discourse

focus to organize the content of the answer. A phrase level grammar is then called to realize the individual

12—

\

phrases of the answer, and the final output is a more coherent, structured multisentential output. Our approach
extends the representation given by Kowalski {Kowalski] which expresses n-ary relations as binary relations to
incorporate information about grammatical categories. Dependencies across literals in the logical cooperative
answer can be detected easily in the binary form, and they are used to identify opportunities for coordination,

subordination and anaphora.

A prototype system has been implemented which transforms the cooperative response into the binary rela-
tions containing grammatical category information, collects dependencies across the binary relations, and uses
them to organize the natural language output. Right now, the system can produce all allowable organizations.

Further work must be done to select among organizations.

Toward developing criteria for organization. we have examined how to use the information gathered in
translating the natural language query into a logical query and then into the database language query. Although
the relations in the database query capture the intention of the user’s natural language query, their literal mean-
ing can differ. For example, a database relation may contain arguments that the user doesn't care about. Any
values that those arguments obtain during the answering process should be suppressed in the natural language

output unless they are determined to be of incidental use to the user.

Our prototype system uses information gathered in the translation from natural language to database
language to focus the cooperative response. The resulting cooperative answers address the actual query asked by

the user rather than the database version.

2.2.2. Computing Answers in Non-Horn Theories and Null Values

An execution model was designed implementing SLINF resolution for disjunctive logic programs. The
model extends the execution model for PROLOG to allow disjunctive clauses. The implementation is in an initial

phase. Currently a loader has been designed and tested for disjunctive clauses. The inference engine itself has not

been completed.

-13-

\

2.3. Papers and Reports Published from November 1989 — November 1960

Below we list the papers or reports written during the period November 1939~ November 1990. As a conse-

quence of the work, we have published 10 papers.

A list of all papers and reports written since the AFOSR first sponsored the work is given in the bibliogra-

phy in Section 4. The list of papers and reports that have been published during the present grant period are:

Bibliography

1. Chakravarthy, U.S., Grant, J. and Minker, J. “Logic Based Approach to Semantic Query Optrimization®,
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990, 162-207.

Gaasterland. T., Giuliano. M., Litcher. A, Liu, Y., & Minker, J. -Using Integrity Constraints to Control
Search in Knowledge Base Systems”, UMIACS-90-27, TR-2416. Feb. 1990

3 Gaasterland. T., Minker, J., Rajasekar. A.. "Knowledge Base Systems - A Deductive Database Approach®,
Workshop on Knowledge Base Management Systems, AAAI 90.

(34

4. Gal. A, & Minker. J. “Producing Cooperative Answers in Deductive Databases” In: Logic and Logic Gram-

mer for Language Processing (Eds. Patrick St. Dizier & Szpakowicz S.) L.S. Horward Ltd. (to appear).

Giuliano. M.. *The Control and Execution of Parallel Logic Programs", Ph.D. Thesis. Department Of Com-

puter Science, University of Maryland, College Park Md. (in preparation)

6. Giuliano, M.. Kohli, M., Minker, J. and Durand, I. “PRISM: A Testbed for Parallel Control,” In: Parallel
Algorithms- for Machine Intelligence, L. Kanal, V. Kumar, P.G. Gopalakrishnan (Editors), Springer-Verlag
1990.

7. Grant, J. and Minker, J. “Integrity Constraints in Knowledge Based Systems® In: Knrowledge Engineering,
Vol. II. Applications, H. Adeli (Editor), McGraw-Hill Publishers, 1990. 1-25.

(1]

8. Minker, J. “Toward A Foundation of Disjunctive Logic Programming,” {Invited Banquet Address), Proceed-
ings of the North American Conference on Logic Programming, 1215-1233, Ewing L. Lusk and Ross A.
Overbeek (Editors), MIT Press, 1989.

9. Lin, Z., “Expected Performance of the Randomized Parallel Backtracking Method”. in Proceeedings of the
1989 North American Conference on Logic Programming, 677-696, Ewing L. Lusk and Ross A. Overbeek
(Editors), MIT Press, 1989, pages 677-696.

10. Liu, Y., “Null Values in Definite Programs”, To appear in 1990 North American Conference of Legic Pro-
gramming.

~14~

3

Bibliography

{Chakravarthy37]
Chakravarthy, U.. Grant. J., Minker, J., Foundatior of semantic query optimazation for deductive data-
bases, in Foundations of Deductive Databases and Logic Programming, Ed. Minker, J., Morgan-Kaufmann,
19387.

iChakravarthy90]
hakravarthy, U.S., Grant, J. and Minker, J. “Logic Based Approach to Semantic Query Optrimization”.
ACM Transactions on Database Systems, Vol. 13, No. 2, June 1990. 162-207.

;Cohen;
Cohen. .J.. "Constraint Logic Programming Languages®, in Communications of the ACM, Vol. 33, No. 7,
July 1990.

{fin38]
Kass, R., Finn, T., *Modeling the User in Natural Language Systems®, in Compulational Linguistics, Vol.
I4. No. 3., September 1988, pages 5-22.

{in87:

Finn, T.. "GUMS - A General User Modelling Shell* TR MS-CIS-87-74 LINC LAB 30, University of
Pennsylvania. Philadelphia, PA, 1987.

‘Fu, Fu. Li-Min. “Combining Nueral and Knowledge Base Approaches to Aruificial Intelligence®, in Methodolo-
gies for Intelligent Systems, 4, Ed. Ras, Z., 1939.

iGaasterland90aj .
Gaasterland. T.. Giuliano, M.. Litcher, A., Liu. Y., & Minker, J. *Using Integrity Constraints to Control
Search in Knowledge Base Systems”, UMIACS-90-27, TR-2416, Feb. 1890,

:Gaasterland90bj -
Gaasterland. T., Minker, J., Rajasekar, A., *Knowledge Base Systems - A Deductive Database Approach",
Workshop on Knowledge Base Management Systems, AAAI 90.

iGal] Gal. A.. & Minker, J. “Producing Cooperative Answers in Deductive Databases” In: Logic and Logic Gram-
mer for Language Processing (Eds. Patrick St. Dizier & Szpakowicz S.) L.S. Horward Ltd. (to appear).

{Giuliano90a;
Giuliano, M., Kohli. M., Minker, J. and Durand, [. “PRISM: A Testbed for Parallel Control,” In: Parallel
Algorithms for Machine Intelligence, L. Kanal, V. Kumar, P.G. Gopalakrishnan (Editors), Springer-Verlag
1990.

iGiuliano90bj
Giuliano. M., *The Control and Execution of Parallel Logic Frograms®, Ph.D. Thesis, Department Of Com-
puter Science. University of Maryland, College Park Md.

{Grant}
Grant, J. and Minker, J. “Integrity Constraints in Knowledge Based Systems” In: Rnowledge Engineering,
Vol. II. Applications, H. Adeli (Editor), McGraw-Hill Publishers, 1990, 1-25.

{Janakarim]

Janakiram, V., Agrawal. D., and Mehrotra. R., "A Randomized Parallel Backtracking Algorithm®, in [EEE
Transactions on Computers, Vol. 37, NO. 12, December 1988.

‘Kale!

[} H
Kale, L.V., *Parallel Execution of Logic Programs: The REDUCE-OR Process Model®, In Proc. of the
Fourth International Conference on Logic Programming, May 1987,

{Kohlig3i
Kohli, M., Minker, J.. *Control in Logic Programs Using Integrity Constraints®, In Proc. of the 1983 Logic
Programming Workshop, Algarve, Portugal, June 1933, pp 153170,

f ol s ————

-t

e T g

‘Kowalski”
Kowalski, R.A., *Logic for Problem Solving®, Elsevier North Holland Inc.. New York, 1979.
{Kumar37aj
Kumar. V., Nageshwara, R.. "Parallel Depth First Search. Part I. Implementation®, in International Jour-
nal of Parallel Programming, Vol. 16, No. 6. 1987. :
(Kumar37b}
Kumar, V., Nageshwara. R., "Parallel Depth First Search. Part. II. Analysis®, in International Journal of
Parallel Programming, Vol. 16, No. 6. 1987.

.Lin} Lin. Z., “Expected Performance of the Randomized Parallel Backtracking Method”, in Proceeedings of the

1989 North American Conference on Logic Programming, 677-696, Ewing L. Lusk and Ross A. Overbeek
(Editors), MIT Press, 1989, pages 677-698.

.~} Liu, Y., *Null Values in Definite Programs”, To appear in 1990 North American Confererce of Logic Pro-

gramming.

Lusk!

Lusk. E., et. al., "The Aurora OR-Parallel PROLOG System®, Proceedings of the International C'on/crcncc
on Fifth Generation Computer Systems, ICOT, 1988.

iMinker:

Minker. J. “Toward A Foundation of Disjunctive Logic Programming,” (Invited Banquet Address), Proceed-
ings of the North American Conference on Logic Programming. 1215-1235. Ewing L. Lusk and Ross A
Overbeek (Editors), MIT Press. 1989.

"Moko-Oka

VMoko-Oka. T.. "Challenge for Knowledge Infromation Processing Sys.cems.(Preliminary Report on Fifth
Generation Computer Systems)", in Proccedings of the International Conference on Fifth Generation Com-
puter Systems, ICOT, 1981, pgs. 1-35.

-16-~

